

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2021

CMSACOR08T-COMPUTER SCIENCE (CC8)

DESIGN AND ANALYSIS OF ALGORITHMS

Time Allotted: 2 Hours

Full Marks: 40

 $2 \times 4 = 8$

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

1. A	Answer any <i>four</i>	questions from	the following	5:	
------	------------------------	----------------	---------------	----	--

- (a) Clearly state two example NP-complete problems.
- (b) Write two differences between divide-and-conquer and greedy method.
- (c) Define Big-Omega (Ω) notation. Give an example bound relating to Ω .
- (d) What do you mean by time complexity and space complexity of an algorithm?
- (e) What is external sorting? Give an example.
- (f) What is heap? How can a heap be represented by an array?
- (g) What do you mean by 'correctness of an algorithm'?
- (h) When do we use branch-and-bound algorithmic technique?

GROUP-B

		Answer any <i>four</i> questions from the following	8×4 = 32
2.	(a)	Why is <i>Quicksort</i> so called even when it requires $O(n^2)$ time in the worst-case? Apply the <i>Quicksort</i> algorithm to sort the list: E, X, A, M, P, L, E in alphabetical order.	2+3
	(b)	Define decision tree. Suppose that you are given three different weights, P, Q and R. Draw a decision tree to compare the weights in descending order.	1+2
3.	(a)	Write the <i>Mergesort</i> algorithm to sort any given set of n integers and show how the algorithm works assuming the value of n is at least 14.	4
	(b)	Describe how you will do the best-case, average-case and worst-case analyses for the <i>Mergesort</i> algorithm.	4
4.	(a)	Write an algorithm of <i>binary search</i> .	2
	(b)	Relatively compare <i>linear search</i> and <i>binary search</i> with necessary examples.	4

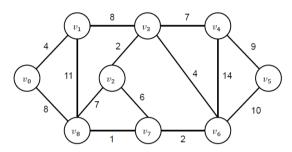
CBCS/B.Sc./Hons./4th Sem./CMSACOR08T/2021

(c) Show that the total number of comparisons in the worst-case of *Insertionsort* is $\Theta(n^2)$ for a list of *n* elements.

2

3

2


3

2

3

3

- 5. (a) Define the Longest Common Subsequence (LCS) problem and explain with an example.
 - (b) What is *dynamic programming*?
 - (c) Is the dynamic programming paradigm more efficient than recursive algorithm while solving the LCS problem? Explain.
- 6. (a) With examples and illustration, explain the procedures involved in Prim's and Kruskal's algorithm to compute minimum spanning tree(s) of the following graph.

- (b) What are feasible solution and optimal solution?
- 7. (a) What do you mean by graph traversal? Give some examples and compare any 1+3 two of them.
 - (b) How is amortized analysis differentiated from worst-case analysis and averagecase analysis? State the role of the credit balance function in computing the amortized cost of some algorithm.
- 8. (a) If $f(n) = 5n^2 + 6n + 4$, then prove that f(n) is $O(n^2)$.
 - (b) Critically comment on "In general, the *Greedy* strategy does not work for the 0-1 knapsack problem".
 - (c) Solve knapsack problem for the following given parameters: n=3; knapsack capacity m=20; profits $(p_1, p_2, p_3) = (25, 24, 15)$; and

weights $(w_1, w_2, w_3) = (18, 15, 10)$.

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-×-